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I. Zntroduotlon

The recently published Cospar Znternatlonal Reference Atmosphere
(CIRA 1986 or CIRA-88) oontalns monthly tLbulations of zonal mean wind

from 0 to 120 km [Fleming et al., 1990] derived from a tropospherlo

ollmatology by Oort [1983] and use of the gradient wind approximation
with the temperature and pressure tables derived from satellite remote

sensing data by Barnett and Corney [1986] for the middle atmosphere
and the mass spectrometer and Incoherent scatter (MSIS-83) empirical
model [Hedin, 1983] for the thermosphere. The MSIS-8_ model was the

predecessor of the MSIS-88 model [Hedin, 1987] model which constitutes

the thermosphere portion of the CIRA-88 density and temperature model
[Hedln, 1988].

The CIRA-86 tabulations are the successor to CIRA 1972 (CIRA-72)

whloh contained wind tabulations [Groves, 1972a] based largely on
rocket and some radar measurements. However, the CIRA-86 t_bulations

were derived independently of the prior rocket data or tabulated

models. Monthly wind models for the upper mesosphere and lower

thermosphere based entirely on MY (medium frequency) and meteor radar

data have also been prepared [Miyahara et al, 1991].

Thermospheric wind data from satellites and ground based incoherent

scatter radar and Fabry-Perot optloal interferometers have been

combined [Hedin et 81., 1991] to generate an analytic empirical
horizontal wind model (_90) of winds above 100 km using a limited

set of vector spherical h_rmonios to describe spatial and temporal

variations in the exosphere and at selected altitude nodes with cubic

spllne interpolation between nodes. The formulation of this wind

model is analogous to the MSIS-86 density and temperature model and

allows the user to obtain atmospheric parameters at an arbitrary
location and time. The MSIS-86 model was recently extended [Hedin,

1991] into the lower atmosphere to provide a single analytic reference

model [MSISE-90] of temperature and density from the ground to the

exosphere. _hile the lower atmosphere portion was essentially derived

from the CIRA-86 tabulations, the structure in the upper mesosphere
was adjusted to best fit historical rocket data as well as maintain

overall hydrostatlo equilibrium while smoothly Joining the previous
upper thermosphere model.

It is the goal of the H_M93 model described herein to extend the
formulation of the H_M90 wind model into the mesosphere and to the

surface so as to provide a description of the average (climatological)

wind system throughout the atmosphere. The model is based not only on
the CIRA-86 tabulations, but selected historical rocket data, previous
rocket data based tabulations, meteor radar and MF radar data, and

lower thermosphere incoherent scatter data previously used for HWM90.

The new model thus represents a compromise between data sources in the
upper stratosphere, mesosphere, and lower thermosphere, while closely

following CIRA-86 in the lower stratosphere and troposphere and HWMg0
in the thermosphere. Model results and data comparisons are given with

emphasis on the mesosphere and lower thermosphere and include also

gradient winds Calculated from MSISE-90. The HWM90 model parameters



were changed at 100 kl to provide a smoother transition into the
mesosphere but otherwise re_Lln unchanged in the thermosphere.

2. Data Sources

The data used to generate this model were derived from published

t_bulatlons, figures, Lnd original data bases as summarized in Table
I. The number and diversity of data sources is greatest in the

mesosphere and lower thermosphere consistent with availability and the

emphasis of this paper.

In the mesosphere and lower thermosphere the techniques and sources

represented include Incoherent scatter radar, MF radar, meteor radar,

rooketsondes, rocket grenade soundings, and gradient winds. These data

were given the most weight in deriving the model. Although MY radar

data appear in later plots at their nominal attributed altitude, they

were given oonslderably less weight in the fit above I00 km because

their real and apparent altitudes are different near the total
refleotlon height. In addition, tabulations in CIRA-72 [Groves, 1972a],

GROVES-69 [Groves, 1969], and CA0-83 (Central Aerologloal Observatory)

[Koshelkov, 1983] summarizing largely older or different rocket data and
tabulations from CIRA-86 [Fleming et al., 1990], providing global

coverage largely based on gradient vlnd calculations, were included with
approximately a factor of two less weight. Gradient winds derived from

MSISE-90 were weighted a factor of ten less than the rocket and radar

data and thus are only included for comparison purposes below 85 km.

However, the CIRA-86 winds were weighted less above 85 km by a factor of

sixteen in order to give some precedence to the newer MSISE-90

representation of the mesosphere/thermosphere transition region.

In the stratosphere the data include rooketsondes, and rocket
grenade soundings, CIRA-72, CA0-83, tabulations from CIRA-86 and
MSISE-90 gradient winds (Table 1). For the troposphere, only the
CIRA-86 tabulations and MSZSE-90 gradient winds are used.

mile the data sources are largely independent, there are also

significant overlaps which should be kept in mind. The data sets will

now be desorlbed with this aspect in mind as far as is known.

Unlike earlier CIRA tabulations, the CIRA-86 reference atmosphere
winds in the stratosphere and mesosphere are inferred from satellite

remote sounding pressure and temperature data and a thermospheric
density s_d temperature model and make no direct use of rocket or

radar vlnd data. The CIRA-86 winds were largely derived from the
gradient wind equation. However, equatorial winds were based on the

second derivative of pressure where the geostrophio formulation fails,

troposphere winds were based on a published data summary, and very
high latitude winds were based on a dyn_mloal constraint (see Fleming

et al., 1990). For longitudinal variations the CIRA-86 tabulations

were supplemented with gradient wind calculations of wave I amplitudes
and phases for the zonal and meridional wind [Fleming et al., 1988].

These gradient winds were favorably compared with radar derived winds

by Xanson et al. [1991]. Gradient winds (Inoludlng equatorial winds
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using the second derivative formulation) were also derived from the
MSISE-90 density and temperature model and will be similar to the
CIRA-86 winds, slnoe MSISE-90 is based heavily on the same CIRA-86

pressure and temperature t_bulatlons. However, there are differences,
p_rtloularly An the upper mesosphere/lower thermosphere, and these are

greatest near the equator. Also, winds derived from the MSISE-90
model wall have smoother v_riatlons as a function of latitude and

month than the CIRA-86 tabulations since MSISE-90 represents a

smoothed version of density and temperature variations.

The CIRA-_2 zonal winds (no meridlonal winds were published) are

largely determined by rocket wind data and early radio-meteor results
available at that time. Much of the data was from reports and private

sources not readily available today, but there is some overlap with

rocket data used here. Below 60 km there are separate tables for

American and European longitudes and these were arbitrarily taken to

apply to 90W and 20E.

The CA0-83 southern hemisphere reference tabulations (only zonal
wind) are derived largely from Russian rocket data but probably

verlap slightly the data used in CIRA-72. A later version
Koshelkov, 1990] incorporates more rocketsonde data but also radar

data that is separately included here.

The GROVES-69 tabulations are an older version of CIRA-72 for both

zonal and merldlonal winds and Include some of the early rocket data.

Only the meridional wind from these tabulations is used here since

CIRA-72 superseded the zonal winds but did not include merldlonal
wind.

Rooketsonde data from the Meteorological Rocket Network (MRN) were
obtained from the NASA/Wallops database, which is similar to the World
Data Center format available from the National Climate Data Center at

Asheville, NC. The data cover the time period from 1969 to 1991 and
were separated into falling sphere data [Sohmidlin, 1985], which make

useful measurements to nearly I00 Em, and paraohute/datasonde
measurements which were limited to 75 k_. Based on the available time

period, only slight overlap is possible with CIRA-72. The MRN

concentrated on taking data near local noon, but data are available
for all parts of the day for most stations. For each station, the

data at two kilometer intervals were separated into two hour local
time groups. Monthly averages, determined by summing over all

available years, were formed separately for the twelve local time
groups. These averages, whloh provide as equitable a local time

coverage as possible, were used as the rooketsonde input to the model
and data comparisons in order to minimize tidal bias from this source.

The rocket grenade data from 1960-1972 were partly included in
GROVES-69 and CIRA-72, but are not included in the rooketsonde data.

The more recent MF and Meteor radar data included here were not

available for CIRA-72 and are presented only as supplementary data for
CIRA 1986 [Manson, 1990].
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S. iodel Formulation

The RI_93 model is an extenslon of the B1rM87 and BTM90 wind models

[Xe_Ln et al., 1988; 1991] summ_TIzing wind measurements An the

thermosphere. Spati_l (latitude and longitude) variations in the
horizontal wand veotoz a_e represented by an expansion in veotor

sphezioal ha_monlos [Morse and Feshbaoh, 1983] with eaoh expansion

ooefflolent represented by a Fourier series An day of year for annual
and semiannual va_iatlons. The expansion involves two orthogonal

veotor fields, the divergenoe B field and the rotational C field.

SoI_T aotivity and magnetlo aotivity variations are not Inoluded below

100 E_. Xemlspherio _Lfferenoes are allowed but are very limited.

This report will treat only non-tidal variations, although tidal and
non-tldal variations were fat An an iteratlve fashion to produoe as

self-oonslstent an overall model as possible. _uasl-blennial
variations are not Inoluded. Zonally averaged meridional winds were

not modelled below 45 Era. Stationaz7 wave I longitude vs.Tiations were

llmited to 7 to 90 Era. Only the rotational (C) field was used to

represent longitude variations sinoe the winds are nearly Eeostrophio,

and thus nearly non-dlvergent, and At seemed unlikely that departures
from a ourl field oould be ex_raoted from the ourrent limited data.

Below 100 Em the wind profiles are represented by a oubio spline,

defined by oubio polynomials between speoified nodes with first and
seoond derivatives oontinuous aoross interior nodes. The nodes were

ohosen to be at I00, 90, 82.5, 75, 67.5, 60, 52.5, 45, 37.5, 30, 22.5,

15, 7.5, and 0 Em providing a oonvenient division into intervals of

approximately one soale height. The wind magnitude and altitude

gradient _Te matohed at 100 Em with the thermosphere values, and in

addition the altitude gradient As speoified (fit) at 100 Era.

The ha_monlo expansion at eaoh altitude node is limited to low
order terms as summarized in Tables 2a and 2b, thus smoothing the

model output An spaoe and tame. The olasslfloatlon into symmetrioal

and asymmetrioal As with respeot to zefleotlon about the equator with
s_etzioal meaning the veotor spherloal ha_monio term provides zonal

winds whloh have the s_me dlreotlon aoross the equator while the
mezldlonal wand ohanges _Lreotlon. The oolumn value 'm' refers to the

longitudinal (or looal time) h_Tmonlo oontent (0 means no longitudinal
va_latlon, I the first hLTmonlo, eto.). The 'n' value is the latitude

ha_monlo order and As always equal to or larger than 'm'. If the n-m
value is even, then the B field term As symmetrlo and the C field term

is asymmetrio. The higher the oz_ler 'n' the greater the latitude

variability that oan be represented. Terms of order higher than those
An the table were not found to be signifioant in fitting the present
data set. In Table 2 a dash (-) means this term is not Inoluded for
this node.

The determination of the h_Tmonio ooefflolents for the various

nodes of the wind profile is aooompllshed by a least squ_es fit to
seleoted subsets of the data. The node to node variations of the

ha_monlo ooefflolents were smoothed by refitting with the sum of the
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squares of the dtfferenoes _etveen adJaoent node ooefflotents
(multlplled_y a oonstant) added to the usual sums of squares of data
minus model dlfferenoes. The multlplioatlve (tension) oonstant was

ohosen so that the sums of squares of the data residuals Inoreased by

no more than one peroent.

Root mean square deviations of the data from the model in different

altitude regions are given in Tables 3a and 3b. The grenade and
inooherent soatter data tend to have the largest average departures

beoause they were not smoothed or based on monthly averages. Natural

variability is also high in the lower thermosphere where tides and
eleotrodynamio effeots are important. The differenoes between the

model and rooket and inooherent soatter data also refleot possible

mismodellng of the tidal variations (model desorlbed in a separate

report), although this is not a major faotor below 100 km.

4. _odel Exs_ples/Comp_rlsons/Disousslon

4.1 Yearly Average Latitude Variations of Zonal Wind

The zonal and annual average zonal winds from the model are
illustrated in Fig. I. The mostly eastward flow in both hemispheres

peaks at 30 m/s at mid-latltudes in the southern hemisphere

stratosphere (15 m/s in northern hemisphere). An equatorial zone of

westward flow peaks near 15 m/s in the stratosphere with small zones
near the surfaoe and upper mesosphere. Eastward winds in the lower

thermosphere are not as large as in CIRA-86.

Further examples of model winds and oomparlsons with data are shown
in Figs. 2 and 3. Here data have been seleoted for rather broad

altitude or latitude intervals and the model wind plotted vs latitude

or altitude for the midpoint of the seleoted intervals. The example

model plot will represent the model prediotion at the exaot altitude

or latitude of individual measurements with a degree of faithfulness
that depends on how rapidly the model varies with altitude, latitude,

eto. The differenoe between the plotted points and the model llne

represents the average differenoe of eaoh measurement, separated by
souroe as speoifled in Table 1, from the model (oaloulated exaotly for

that looatlon) and the error bars represent the one standard deviation

soatter of this dlfferenoe within the plot bin limits. There are up
to three plots for eaoh situation, separating data into three groups:
gradient winds, one as published in CIRA-86 and one as derived form
MSISE-90; rooket data, CIRA-72. and CA0-83 (primarily

stratosphere/mesosphere) and Inooherent soatter data (thermosphere);
and meteor and MF radars (monthly averages).

In the stratosphere the winds are well defined by gradient winds,

rooket data, CIRA-72 and CA0-83 (Figs. 2 and 3). The gradient winds

are in good agreement with eaoh other exoept at the equator, thus
oonflrmlng the representation of temperature and density gradients in
MSISE-90. At low latitudes (Figs. 2a and 2b) the gradient winds may

differ by 5-10 m/s, but neither is systematloally in better agreement

with the rooket data. Equatorial differenoes are not surprising given
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the dependence of the derived zonal wind on the second derivative of
presstu, e as a function of latitude, rather than the first, and the

small magnitudes of the terms involved [Fleming and Chandra, 1989].
The quasi-biennial variation near the equator will also introduce
some scatter. At high latitudes there is a systematic tendency for
the rocket data, CIRA-72, and CA0-83 to be higher than the gradient
winds An the southern hemisphere by 5 to 10 m/s and similarly lower
than the gradient winds in the northern hemisphere.

In the mesosphere the winds are fairly well defined by gradient
winds, rocket data, CIRA-72, CA0-83, and Meteor/MF radars, but with

increasing scatter and discrepancies toward higher altitudes and at
lower latitudes. The Meteor and MY radar values generally differ from

the model by less than 5 m/s. At low latitudes, CIRA-86 is fairly
close to the model but MSISE-90 i8 higher by 10 m/s (Fig. 3b). Rocket

data show stronger eastward flow than the model in the lower
mesosphere (closer to MSISE-90) and stronger westward flow than the
model in the upper mesosphere (closer to CIRA-86). At midlatitudes,
the rocket data, CIRA-72, and CA0-83 show stronger eastward flow by 5
to 10 m/s than the gradient or meteor and MY winds (Fig. 20).

In the lower thermosphere there is considerable scatter between
data points and sets such that consistency is often poor. The spread

between gradient winds is the order of 10-20 m/s. They follow the

model in only a very rough way. The Meteor and MY radar data are
generally clustered Lbout the model within 5 m/s. At low latitudes,

rocket data, CIRA-72, and IS radar are mostly less than model while
the gradient winds are much above (Fig. 2d). At high latitudes, the
IS radar tends to be above the model while the Meteor/MY radar tends
to be below model.

4.2 Yearly Average L_titude Variations of Meridional Wind

The zonal and annual average meridional winds (Fig. 1) are mostly
northward in the northern hemisphere and southward in the southern
hemisphere peaking near _ m/s in the mesosphere and 6 m/s in the lower
thermosphere vlth small regions of reverse flow near the mesopause at

lower latitudes and the stratopause at high latitudes. The model uses
only the two lowest symmetric harmonics SO there is no hemispheric
difference except in direction of flow.

Model and data comparison plots similar to those for zonal winds
are shown in Figs. 4 and 5, except there is no plot for gradient winds

and the only rocket model is GROVES-B9.

There is considerable scatter among data points and data sets (Figs.
4 and 5). Consistency is often poor, arguing against the use of
higher harmonics for a more complicated pattern. However, the rocket
data (Fig. 5b) suggest that an alternating pattern of north/south
cells near 75 km in equatorial latitudes should probably be stronger
than modeled. Thile the rocket data is fairly consistent in the lower

mesosphere, Groves-69 is inconsistent with meteor and MY radar in the

southern hemisphere. Meteor and MF radar data generally cluster about



the model within 5 m/s. There is up to 10 m/s dlfferenoes among

Inooherent soatter data in the lower thermosphere.

4.S Annual and Semiannual Variations of Zonal Wind

The annual variation of the zonal wind has a winter eastward

maximum phase (Fig. 6) peaking at midlatitudes Just above the
stratopause with amplitudes of 70 m/s (southern hemisphere) and 60 m/s

(northern). An s_nual variation with a summer eastward maximum phase

exists near the mesopause with an amplitude of 10 m/s. The semiannual
variation (Fig. 7) has an equinox eastward maximum at low latitudes

with an amplitude of 20 m/s in upper stratosphere and a westward

maximum at the equinoxes in upper mesosphere with an amplitude of 15
m/s. These features have been well dooumented in the literature (e.g.
Angell and Korshover [1970]; Groves, 1972b; Belmont [1985] and

referenoes therein). Example latitudinal oross-seotions are shown in
Fig. 8 for four different months.

In the stratosphere the annual and semiannual variations are rather
well defined by gradient winds, rooket data, CIRA-72, and CA0-83.

Comparison plots versus day of year for six broad latitude groupings
are shown in Fig. 9. There are sometimes oonslderable differenoes
suoh as at high southern latitudes where CIRA-72 and CA0-83 winds are

well above the model and gradient winds during the September equinox
(Fig. 9a).

In the mesosphere the annual and semiannual variations are fairly
well defined by gradient wind, rooket data, CIRA-72, and CA0-83, as

well as meteor and MF radar data. However, at low latitudes the

gradient wind variation is qualitatively different from rooket and

radar in the upper mesosphere. Reoently reported equatorial data

[Vtnoent and Lesloar, 1991; Frltts and Islet, 1992] support a strong
westward wind in the spring equinox whloh is quite different from the
gradient winds (Figs. 91 and 9m). The model semiannual amplitude
reaohes a deeper minimum near 65 km whioh is more in aooord with

rooket data than with the amplitude suggested by gradient winds
[Fleming and Chandra, 1989]. At northern mid-latitudes near 80 km

(Fig. 9n), there are small but striking dlfferenoes in the annual
variation observed by different teohniques. Meteor radars have a
weaker annual variation than either rooket or gradient winds, while
the MF radars in this grouping (Saskatoon and Urbana) have an annual

variation similar to the gradient winds and larger than the variation
desoribed by rooket data. The small average eastward flow in Deoember

from the meteor radars leads to an extremely weak (oompared to the
southern hemisphere winter) eastward mesospherio Jet during northern
winter in the Mlyahara et al. [1991] model based only on radar data.
Differenoes in the height of the summer reversal from westward to
eastward flow [Manson et al., 1990] also oontribute to differenoes in

the annual variation in the 80 to 90 km region. For example,
Saskatoon has a reversal height near 90 km and Atlanta and Kyoto have
a reversal height near 80 km. In the lower mesosphere there is
oonsiders_le separation between CIRA-72 and CA0-83 at high southern
latitudes (Figs. 9a and 9b) where data has always been sparse.
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Zn the lower thermosphere there s_e considerable differences between

the gradient winds. Consistency is often poor between data sets. The
gradient winds _re closer to each other and the model during solstices

than equinoxes (e.g. figs. 9f and 9p). The relatively large eastward
winds of CIRA-86 relative to rads_ data have been discussed by M_nson

et el. [1991]. Here the temperature stud pressure grndients in the

revised MSISE-90 appear to be an improvement over CIRA-86/MSIS-86. At
low latitudes, CIRA-86 is partloulLrly high relative to rocket,

meteor, and KF rs_ar during equinoxes (Figs. 9i and 9m). At high

latitudes, incoherent scatter shows larger annual variations in the

northern hemisphere (_une maximum) than meteor and MF radar or

gradient winds (Fig. 9r). This may be due in part to limited data or

biasing by magnetic disturbances when data yield is best.

4.4 Annual and Semiannual Variations of Meridionel Wind

The annual variation of the merldlonal wind (Fig. 6) has a _anuary

northward maximum peaking at 8 mls near the equator in the mesosphere

and reversing to a _uly msximum in the lower thermosphere above 105

km. Only the lowest harmonic in latitude is used below the

thermosphere, given the large data scatter, producing meridional winds

of the sue direotlon in both hemispheres. The semiannual variation

is very smell (Fig. 7) with an equinox poleward maximum at

midlatltudes of 2 m/s in upper mesosphere and equatorward maximum of I
m/s in lower mesosphere. Only the lowest harmonic in latitude is used

providing winds of opposite direction in each hemisphere. Example

latitudinal cross-sections are shown in Fig. 8 for four different
months.

Data oomparlson plots are shown in Fig. I0. There is oonslder_ble

scatter among data points and data sets. Consistency is often poor

between data sets. Overall model trends are clearly present in the
data, but details are not partioul_rly robust. While fluctuations in

merldional and zonel wind measurements are similar (Table 3), the

desired average slgnel is much smaller relative to the fluctuations
for the merldional wind And thus incomplete coverage in the rocket and

incoherent scatter data is more noticeable. Seasonal patterns are
often similar to Groves [1969] but of lesser magnitude (e.g. Fig.

10a). Sometimes higher uplltudes would be consistent with limited
radar d_ta (Fig. 10o) but not so obviously consistent with similar

data in the other hemisphere (Fig. 101). Latitudinal patterns are

also similar to those of Maiyahara et el. [1991], although less
detailed. In particular, our analysis did not find a region of winter

to summer flow near 80 km at equatoriel latitudes (imbedded in the
more typical summer to winter flow). The oharaoterlstlos of the
summer to winter flow as found in radar data and the relation to

measured momentum deposition by gravity waves has been discussed by
Manson et al. [1991]. The reversal to a winter to summer flow in the

lower thermosphere is clearly present in the MF/Meteor radar data, as

it was in the incoherent scatter data [Hedin et al., 1991], but again

with station to station differences in reversal height as in the zonal
wind.
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4.5 Longitude Variations

The stationary wave I (first harmonio in longitude) amplitudes are

illustrated in Figs. 11 and 12. The zonal variations peak in the upper
stratosphere at northern winter mid-latltudes with an amplitude of 30
m/s (zonal) and again at the pole with an amplitude of 35 m/s (zonal and

meridional). Merldlon_l wind variations peak at the pole with the same

amplitude. Southern hemisphere amplitudes are less than 10 m/s. Annual

and semiannual variation in wave amplitude are inoluded in the model.

Longitude variations related to planetary waves are not oarried above g0

km for laok of defining data (but longitude variations are present in

thermosphere above 130 km beoause of physioal prooesses tied to the
magnetlo field geometry) or below 15 km (limited by the CIRA
tabulations).

The longitude variations are derived almost entirely from gradient
wind data. Comparisons of the gradient winds from remote satellite
data [Fleming et al., 1988] and from MSISE-90 with the HWM93 model are
shown in Figs. 13 and 14. The two gradient wind estimates are

generally similar with eaoh other exoept near the poles where there
was diffioulty in performing the numerioal differentiation from the

tabulated satellite data and near the equator where, as for zonal
averages, the wind depends on a seoond derivative of pressure. The

month to month variability is remarkably well represented by a sum of
annual and semiannual variations in the longitudinal harmonio

ooefflolents. Other data are nominally oonsistent, but are

Insuffloient in longitude ooverage to define the variation. In

partioular, the CIRA-72 tables, separated by Amerioan and European
longitudes, are reasonably oonslstent with the satellite data. An

example oomparlng gradient winds with other data is shown in Fig. 15.
Systematio differenoes are notioed between gradient and radar winds as

seen also in the zonal average plots (Fig. 9n).

Seoond harmonio (wave 2) variations are present [Barnett and

Labltzke, 1990; Fleming et al., 1988] in the stratosphere and
mesosphere but, unlike the wave I variations, their month to month

variability is more random and not as usefully represented in terms of
a mean and annual and semiannual variations and is thus not inoluded in
this model.

5. Summary

Referenoe winds from CIRA-86 oomblned with rooket soundings,
inooherent soatter, MF radar, meteor radar, and older referenoe

tabulations have been used to extend the H_M90 spherloal harmonlo wind

model into the lower atmosphere providing a unified desoriptlon of
zonal and merldional prevailing winds from the surfaoe to the

exosphere. While month to month details oannot be oompletely
represented, mesospherlo data are fit with an overall rms error of

approximately 15 m/s and oonslderably better in the stratosphere.
Comparison with rooket and radar data Indioates that the model

represents ourrent knowledge of olimatology reasonably well.
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Table 2a. Maximum B Field Spherical Harmonic Order (n)

Term

B field poremeter (node altitude)
grad

m lee ge 82 75 87 6e 52 45 37 3e 22 15 7 e lee

Symmetrical
Time Indep. e 4 4 4 4 4 2 2 2 - - - 2
Semiannual • - 2 2 2 2 2 2 .....

Asymmtrical
Annual e 3 1 1 1 1 ......... 1

Table 2b. Maximum C Field Spherical Hamanic Order (n)

Te I1

C field parameter (node altitude)
grad

n lee 9e 82 75 67 6e 52 45 37 3e 22 15 7 e lee

Syumetrical
Time |ndep. e
Annual •
Semiannual e

Longitude 1
Longitude- 1

annual
Longitude- 1

semiannual

Asymmetrical
Time Indep. e
Annual •
Semiannual •
Longitude I
Longitude- 1

annual
Longitude- 1

semiannual

5 S 5 S S S 5 5 5 5 S S S S S
- 1 1 1 1 1 1 1 1 1 1 1 - - -
3 S 5 S 5 S 5 S 5 S 3 3 - - 3
- - 6 6 6 6 6 6 6 8 6 6 - - -
- - 6 6 6 6 6 6 6 $ 6 6 - - -

- - 6 6 6 $ 6 6 6 6 6 6 - -

2 2 2 2 2 2 2 2 2 2 2 -
4 6 6 6 6 6 6 6 $ 6 6 6 6 6 2
- 4 4 4 4 4 4 4 4 4 4 ....
- - 5 5 5 5 5 5 5 5 5 5 - - -
- - 5 5 5 5 5 5 5 5 S 5 - - -

- - 5 5 5 5 5 5 5 5 S 5 - -
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TABLE 3a. RMS Zonal Wind Differences from B_M92

Data Set 15-60 km 60-90 km 90-120 km

rms pts rms pts rms pts

MSIS Gradient 8 1428 12 1020 15 1020

CIRA-86 8 2521 13 1973 21 1525

Datasonde 7 4949 13 1894

Falling Sphere I0 1550 13 1336 32 135
Grenade 16 771 18 973 55 146
CIRA-72 16 1855 18 1225 22 744

0A0-83 I0 768 12 480
MF radar 6 1029 6 896
Meteor radar 11 776 8 866
IS radar 47 1329

TABLE 3b. RKS Merldional Wind Differences from HWM92

Data Set 15-60 km 60-90 km 90-120 Fun

rms pts rms pts rms pts

D_tasonde 4 4949 9 1684

Falling Sphere 4 1551 9 1368 27 138
Grenade I0 772 16 973 50 147

GROVES-69 5 204 8 1260 12 972

MF radar 5 1028 5 896
Meteor radar 9 394 6 487
IS radar 34 2064

Here rms is root mean square dlfferenoe between data and model, pts ks

number of sample points, MF is medium frequency, and IS is incoherent
scatter.
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